The Pythagorean Inequality refers to a relationship between the lengths of the sides of a triangle, stating that in any triangle with sides of lengths $a$, $b$, and $c$, where $c$ is the length of the longest side, it holds that $c^2 < a^2 + b^2$ for an acute triangle, $c^2 = a^2 + b^2$ for a right triangle, and $c^2 > a^2 + b^2$ for an obtuse triangle. This concept connects directly to understanding the nature of triangles and proves essential for indirect proofs regarding triangle properties.