The function F(x)=∫1x4t2dtF(x) = \int_{1}^{\sqrt{x}}4t^2dtF(x)=∫1x4t2dt represents the accumulation of the function 4t24t^24t2 over the interval [1,x][1, \sqrt{x}][1,x]. What is the derivative F′(x)F'(x)F′(x) of this function?