๐Ÿ“ˆcollege algebra review

key term - Independent system

Definition

An independent system is a set of linear equations with exactly one solution. The graphs of these equations intersect at a single point.

5 Must Know Facts For Your Next Test

  1. An independent system has a unique solution, typically represented as $(x, y)$.
  2. The determinant of the coefficient matrix for an independent system is non-zero.
  3. Graphically, the lines representing each equation in an independent system intersect at exactly one point.
  4. In an independent system, the equations are not multiples of each other.
  5. The solution to an independent system can be found using methods such as substitution, elimination, or matrix operations.

Review Questions

"Independent system" also found in: