De Moivre's theorem states that for any complex number expressed in polar form, the $n$th power of the complex number can be found using the formula $(r( ext{cos} \theta + i \text{sin} \theta))^n = r^n (\text{cos}(n\theta) + i\text{sin}(n\theta))$. This theorem connects complex numbers to trigonometric functions and provides a powerful tool for calculating powers and roots of complex numbers, particularly when they are represented in polar form.