scoresvideos

โˆซcalculus i review

key term - Root function

Citation:

Definition

A root function is a function that involves the extraction of roots, typically square roots or cube roots, of variables. It is commonly represented as $f(x) = \sqrt[n]{x}$ where $n$ is a positive integer.

5 Must Know Facts For Your Next Test

  1. The domain of the square root function $f(x) = \sqrt{x}$ is $x \geq 0$ because you cannot take the square root of a negative number in real numbers.
  2. The graph of a square root function $f(x) = \sqrt{x}$ starts at the origin (0,0) and increases gradually.
  3. For odd root functions like $f(x) = \sqrt[3]{x}$, the domain includes all real numbers because you can take an odd root of any real number.
  4. Root functions are non-linear; their graphs are curves rather than straight lines.
  5. The inverse function of a square root function $f(x) = \sqrt{x}$ is the squaring function $g(x) = x^2$.

Review Questions

"Root function" also found in:

Subjects (1)