join the ap-calc course

🏫 fall

spring

⏱️ **7 min read**

table of contents

Defining Average and Instantaneous Rates of Change at a Point 📍Connecting Differentiability and Continuity: Determining when Derivatives DO or DO NOT EXIST ❗
Applying the Power Rule 🦸♂️🦸♀️Derivative Rules: Constant, Sum, Difference, and Constant Multiple ➕➖Derivatives of cos, sin, natural exponential functions, and the natural log 🤔The Product Rule ✖The Quotient Rule ➗Finding the Derivatives of Tangent, Cotangent, Secant, and/or Cosecant Functions 🔎Final Note 🎓

written by

published on august 5, 2020

Last updated on August 4, 2020

(Photo courtesy of slideshare.net)

An important concept to grasp in this lesson is the difference between the average rate of change and the instantaneous rate of change. The** average rate of change** is simply the __slope of the secant line between two points__. The** instantaneous rate of change** is the __slope of the tangent line at any given point__ (the *derivative*).

The rate of change formula (pictured below) is the slope of the secant line between two points. **"f(b)"** represents your y-value to your first point and **"f(a)"** represents your y-value to your second point, "**b**" and "**a**" are the corresponding x-values to those coordinates.

The instantaneous rate of change formula (pictured below) is the slope of the tangent line at a given point. Many people are puzzled with f(x+h) but it simply means that whenever you see an x in your original equation, you insert "x+h." For example, if f(x) = x² + 3x - 9 then f(x+h) = (x+h)² + 3(x+h) - 9. The second part of this formula is subtracting f(x) from f(x+h); however, a common error is that students forget to distribute the "-" sign to all the terms in the original function. The last part is to put everything over h and simplify the entire equation by combining like terms and factoring). If there are any h terms left you evaluate them as 0 and then simplify.

- The formula pictured below is the
*definition*of the derivative.

Defining the Derivative of a Function and Using Derivative Notation 🤓

🎥Watch - AP Calculus AB/BC: Limit Definition of a Derivative

The function that gives the instantaneous rate of change is the derivative, and the **derivative** is the __slope of the tangent line to the graph at a given point__. The formula for the derivative is the same as the instantaneous rate of change formula.

The AP exam *loves* using the notation for the derivative, so don't be scared as they all me Tan the same thing; however in certain scenarios in calculus, we may use one notation over the other. Here are some of the ways we can express the derivative (pictured below). **For now, only review the notations concerning the first derivative**. The bottom line is that y' is synonymous with f'(x) or dy/dx or d/dx f(x)!

(Photo courtesy of education.fcps.org)

🎥Read- AP Calculus AB/BC: Differentiability Rules

If you need a complete refresher on continuity you can watch a replay of our stream on Continuity here!

**Being differentiable means that a derivative exists**. It is important to know that being differentiable is being continuous however being continuous does not mean you are differentiable.

On top of being continuous in order to be differentiable, the function must have** NO corners, cusps, and no vertical tangent lines**.

""

(Photo courtesy of slideplayer.com)

⚡ Watch- AP Calculus AB/BC: Practicing Derivative Rules

Using the definition of the derivative for every single problem you encounter is a time-consuming and it is also open to careless errors and mistakes. However, one great mathematician decided to bless us with a fundamental rule known as the Power Rule, pictured below.

Your "n" term is the power your x-term is being raised to.

For example, in x² your "n" term would be 2. Additionally, you multiply that "n" value to the term's coefficient (in x² your coefficient is 1) and then decrease your terms exponent by 1 (using the product rule the derivative of x² is 2x).

Remember: the derivative is the slope of the line tangent to any point on the graph and using the power rule (like the definition of the derivative) simply gives you the formula to the slope of the line tangent. If you would like to know what that point is then you would have to evaluate using your x-coordinate.

⚡ Watch- AP Calculus AB/BC: Introduction to Finding Derivatives

These first set of derivative rules are simple but absolutely crucial to your understanding of calculus.

(Photo courtesy of www.khanacademy.org)

The

**sum rule**states that__the derivative of a sum of functions is the same as the sum of their derivatives__.- Just like the sum rule, the
**difference rule**states__the derivative of a difference in functions is the same as the difference in their derivatives__.

While these two rules may seem confusing, they are actually straightforward. The sum and difference rules are essentially applications of the power rule to every term, as well as combining them (if possible). Here is an example of using both these formulas, pictured below:

(Photo courtesy of https://magoosh.com)

The

**constant multiple rule**states that__the derivative of a constant times a function is equal to the constant times the derivative__.

For example, the derivative of 5・x², (5x²) is equal to 5 times the derivative of 2x.

The

**constant rule**states that__the derivative of any constant is 0__(for example, the derivative of 5 is 0).

⚡ Read- AP Calculus AB/BC: Deritvatives of Special Functions

These rules must be committed to memory as they are used throughout the year in calculus.

- The derivative of sin (x) is
**cos (x)**. - The derivative of cos (x) is
**-sin (x).**

If you would like to find a derivative of a trig function with a constant (such as 5sin(x)), you would use the **constant multiple rule** to get 5cos(x).

- It is important to note that the derivative of these functions only work when you are only using "x" in the function. For example, the derivative of sin(3x) is
**not**cos(3x), in order to get the correct derivative you would need to apply the chain rule.*(Do not worry about the chain rule in this unit as it is covered in Unit 3 of calculus.)*

**The derivative of e^x is e^x**. No matter how many times you take the derivative of this function, the derivative of e^x will remain as e^x.

The derivative of e^x only works when it is raised to only the "x" power. For example, the derivative e^2x is

**not**e^2x, in order to get the correct derivative you would need to apply the chain rule.

The derivative of ln(x) is pictured below. If you would want to find the derivative of ln(4x), you would need to apply the chain rule.

By now, we know how to add and subtract derivative functions, but what about multiplying them? With the **product rule** we can finally multiply derivatives together. Here is the rule (pictured below)

f(x) and g(x) represent two different functions that are being multiplied together. Here is an example of how to apply this rule (pictured below).

(Photo courtesy of need2knowaboutcalculus.weebly.com)

Let's call the first function f(x) and the second function g(x). For our first part, we will take the derivative of the first function and multiply it by the original second function. For the second part, we then multiply the original first function and multiply that by the derivative of the second function. Finally, we will add up both parts. If it is helpful to remember the derivative of first times second plus derivative of second times first, go for it!

Let's now move on to the product rule's partner: the **Quotient Rule**! With the quotient rule, we can finally divide derivatives. Here is what the quotient rule looks like. pictured below:

(Photo courtesy of andymath.com)

The quotient rule states that f(x) is the top function (the dividend) and g(x) is the bottom function (divisor). The first part would be to multiply g(x) by the derivative of f(x) and the second part would be to multiply f(x) by the derivative of g(x). After that, you would subtract the two parts (don't forget to distribute the negative sign!). Lastly, you would divide everything by g(x)². If you need another visual, here is an example (pictured below).

(Photo courtesy of www.studygeek.org)

Note that (4x-2) is your top function, f(x) and (x²+1) is your bottom function, g(x).

⚡ Read- AP Calculus AB/BC: Deritvatives of Special Functions, Part II

Here is a helpful chart with the derivatives of the rest of the trigonometric functions besides sine and cosine:

(Photo courtesy of slideplayer.com)

However, it is important to take note that AP Calculus mainly focuses on the derivatives of sin, cos, and tan.

Make sure you get the basics down of unit 2 of AP Calculus AB for this unit sets the foundations of calculus, which is essentially the rest of the course. As a result, it is essential for you to understand these concepts!

*ap® and advanced placement® are registered trademarks of the college board, which was not involved in the production of, and does not endorse, this product.

© fiveable 2020 | all rights reserved.