Combinatorics
Stirling numbers of the second kind, denoted as $$S(n, k)$$, count the ways to partition a set of n elements into k non-empty subsets. These numbers are essential in combinatorial mathematics and connect to various concepts, including counting problems, Bell numbers, and Stirling numbers of the first kind. They are widely used in combinatorial applications, such as calculating the number of ways to distribute objects into groups.
congrats on reading the definition of Stirling numbers of the second kind. now let's actually learn it.