Spectral Theory
Polar decomposition is a representation of a linear operator as the product of a unitary operator and a positive semi-definite operator. This concept is crucial for understanding how operators can be analyzed in terms of their geometric and algebraic properties, especially in relation to adjoint operators, where the polar decomposition helps reveal insights into the spectral characteristics and structure of the operator.
congrats on reading the definition of Polar Decomposition. now let's actually learn it.