Differential Equations Solutions
Stability in numerical methods refers to the behavior of a numerical solution as it evolves over time, particularly its sensitivity to small changes in initial conditions or parameters. A stable method produces solutions that do not diverge uncontrollably and remain bounded over time, ensuring that errors do not grow significantly as computations progress. Stability is crucial for ensuring accurate and reliable results when solving differential equations numerically.
congrats on reading the definition of Stability. now let's actually learn it.