Noncommutative Geometry
Spectral triples are mathematical structures used in noncommutative geometry that generalize the notion of a geometric space by combining algebraic and analytic data. They consist of an algebra, a Hilbert space, and a self-adjoint operator, which together capture the essence of both classical geometry and quantum mechanics, making them a powerful tool for studying various mathematical and physical concepts.
congrats on reading the definition of Spectral Triples. now let's actually learn it.