The final value theorem provides a method for determining the steady-state behavior of a system as time approaches infinity, using the Laplace transform. This theorem states that if a function is stable and has a limit as time goes to infinity, then the final value can be computed from its Laplace transform. This connects to properties of Laplace transforms, the process of finding inverse transforms, and is particularly useful in solving differential equations, allowing for quick insights into long-term system behavior without directly solving the equations.