K-Theory
Fredholm modules are algebraic structures that arise in K-homology, particularly in the study of topological indices. They consist of a pair of spaces equipped with a self-adjoint operator and an associated ideal that capture essential geometric and analytical information about the space. These modules provide a way to connect geometry, topology, and analysis, allowing for the computation of invariants related to the index of elliptic operators.
congrats on reading the definition of Fredholm Modules. now let's actually learn it.