Fractal Geometry
The Cantor set is a classic example of a fractal, formed by repeatedly removing the middle third of a line segment, resulting in a set that is uncountably infinite yet has a total length of zero. This construction not only illustrates the concept of a fractal but also serves as a foundational example in understanding concepts like dimension and self-similarity in geometry.
congrats on reading the definition of Cantor set. now let's actually learn it.