โˆซcalculus i review

Symmetry about the y-axis

Written by the Fiveable Content Team โ€ข Last updated September 2025
Written by the Fiveable Content Team โ€ข Last updated September 2025

Definition

A function is symmetric about the y-axis if for every point $(x, y)$ on the graph, the point $(-x, y)$ is also on the graph. This implies that $f(x) = f(-x)$ for all x in the domain of the function.

5 Must Know Facts For Your Next Test

  1. Symmetry about the y-axis means that reflecting the graph over the y-axis does not change its appearance.
  2. If a function $f$ is even, then it is symmetric about the y-axis.
  3. To test for symmetry about the y-axis algebraically, replace $x$ with $-x$ in the function and check if you get back the original function.
  4. Graphs of polynomial functions with only even powers of x (e.g., $f(x) = x^2$, $f(x) = x^4 - 2x^2 + 1$) are symmetric about the y-axis.
  5. Y-axis symmetry can simplify integration and finding areas under curves since you can integrate from 0 to a positive value and double the result.

Review Questions