Algebraic Logic
Satisfiability refers to the property of a logical formula or statement being true under at least one interpretation or model. In other words, a statement is satisfiable if there exists an assignment of truth values to its variables that makes the statement true. This concept is fundamental in logic and serves as a basis for various applications, including proving the completeness of logical systems and understanding relationships within algebraic structures like Lindenbaum-Tarski algebras and cylindric algebras.
congrats on reading the definition of Satisfiability. now let's actually learn it.