Algebraic K-Theory
Elliptic operators are a class of differential operators that play a crucial role in the study of partial differential equations and their solutions. They are characterized by having their symbol being invertible outside a compact set, which ensures unique solvability for associated boundary value problems. This property connects elliptic operators to important concepts in topology and geometry, particularly in the computation of K-groups.
congrats on reading the definition of Elliptic Operators. now let's actually learn it.